

Nambu's Generalization of Canonical Formulation

- Rigid rotator as an example [Nambu 73]
- Hamilton-Jacobi eqs:
$\{H, x\}=d x / d t, \quad\{H, p\}=d p / d t$
- $\{H, F(y)\}=d F(y) / d t, \quad y=(x, p)$
- Generalization:
$\{H, G, F(z)\}=d F(z) / d t, \quad z=(p, q, r)$
for a 3 dim. phase space
- Conservation of phase space volume
- Invariant under canonical transfs. of H, G.

Generalization of Noncommutative Geometry

- Noncommutative space:

$$
[x, y]=\mathrm{i} \theta, \quad \text { approx. by }\{x, y\}=\theta
$$

- Generalization (nonassociative space?): $\{x, y, z\}=\theta \quad$ for a 3 dim. space
- Physical laws deformed
- Implications to Cosmology?
- String Theory / M Theory:
B field on D-brane \rightarrow noncommutativity
C field on M5-brane \rightarrow Nambu-Poisson bracket

Lie (2-)algebra

- $H=\left\{A=\sum_{a=1 \sim n} A_{a} T^{a}\right\},[A, B] \in H$
- $[A, B]=$ bi-linear, skew-symmetric
- $[\mathrm{A},[\mathrm{B}, \mathrm{C}]]=[[\mathrm{A}, \mathrm{B}], \mathrm{C}]+[\mathrm{B},[\mathrm{A}, \mathrm{C}]] \leftarrow$ Covariance
- $[\mathrm{A},[\mathrm{B}, \mathrm{C}]]-[\mathrm{B},[\mathrm{A}, \mathrm{C}]]=[[\mathrm{A}, \mathrm{B}], \mathrm{C}] \leftarrow$ Closure
(The same Jacobi id. written differently.)
- Let $\delta_{A} B=[A, B]$
$\delta_{A}[B, C]=\left[\delta_{A} B, C\right]+\left[B, \delta_{A} C\right]$
$\delta_{1} \delta_{2} B-\delta_{2} \delta_{1} B=\left[\delta_{1}, \delta_{2}\right] B$

Commutator vs. Lie bracket

- Commutator [A, B] = A.B - B.A
- An associative algebra (rules of multiplication that satisfy associativity) is assumed.
- Jacobi identity is a result of associativity: (A.B).C = A.(B.C)
- Commutator $=$ Lie bracket for representations of Lie algebra using matrices.
- The algebra is called the "universal enveloping Lie algebra".

Lie 3-algebra

- $H=\left\{A=\sum_{a=1 \sim n} A_{a} T^{a}\right\},[A, B, C] \in H$
- $[A, B, C]=$ tri-linear, skew-symmetric
- $[A, B,[C, D, E]]=[[A, B, C], D, E]+$ $[C,[A, B, D], E]+[C, D,[A, B, E]]$ fundamental id. (generalized Jacobi id.)
- Let $\delta_{A B} C=[A, B, C]$

$$
\begin{aligned}
& \delta_{A B}[C, D, E]=\left[\delta_{A B} C, D, E\right]+\left[C, \delta_{A B} D, E\right] \\
& +\left[C, D, \delta_{A B} E\right]
\end{aligned}
$$

- 4 generators $\left\{T_{a}\right\}(a=1,2,3,4)$
- $\left[T_{a}, T_{b}, T_{c}\right]=\varepsilon_{a b c d} T_{d}$
[Filippov 85: n-Lie algebras]
- generalization of $\operatorname{su}(2)$
- Symmetry transformation is generated by two generators:
$\delta_{\Lambda} A=\Lambda_{a b}\left[T_{a}, T_{b}, A\right]$
$=$ infinitesimal $\mathrm{SO}(4)$ rotation

Poisson bracket

- Poisson brackets are infinite dim. Lie algs.
- $\{f(x), g(x)\}=P^{a b}(x) \partial_{a} f(x) \partial_{b} g(x)$

1. Skew-symmetry
2. Jacobi identity
3. Leibniz rule (new addition):
$\{f, g h\}=\{f, g\} h+g\{f, h\}$

- Darboux theorem:

Locally Pab is canonical for $2 m$ of the n coordinates

Nambu-Poisson bracket

- Generalization of Poisson brackets
[Nambu 73, Takhtajan 94]
- $\{f, g, h\}=P^{a b c} \partial_{a} f \partial_{b} g \partial_{c} h$

1. Skew-symmetry
2. Fundamental identity
3. Leibniz rule:
$\left\{f, g, h_{1} . h_{2}\right\}=\left\{f, g, h_{1}\right\} h_{2}+\left\{f, g, h_{2}\right\} h_{1}$

- Decomposability theorem:

Locally Pabc $=\varepsilon^{a b c}$ for 3 of the n coordinates

Phenomenology of Nonassociative Geometry

- Nonassociative space:

$$
\{x, y, z\}=\theta \quad \text { for our dim. space }
$$

- Rotation and translation symmetry preserved
- Gauge transformation laws deformed
- Implications to Cosmology?

Modification of CMB spectrum?
.......

